Antioxidants and Cancer Prevention (cont.)

Are antioxidants under investigation in current large-scale clinical trials?

Three large-scale clinical trials continue to investigate the effect of antioxidants on cancer. The objective of each of these studies is described below. More information about clinical trails can be obtained using cancer.gov/clinicaltrials, www.clinicaltrials.gov, or the CRISP database at www.nih.gov.

  • The Women's Health Study (WHS) is currently evaluating the effect of vitamin E in the primary prevention of cancer among U.S. female health professionals age 45 and older. The WHS is expected to conclude in August 2004.
  • The Selenium and Vitamin E Cancer Prevention Trial (SELECT) is taking place in the United States, Puerto Rico, and Canada. SELECT is trying to find out if taking selenium and/or vitamin E supplements can prevent prostate cancer in men age 50 or older. The SELECT trial is expected to stop recruiting patients in May 2006.
  • The Physicians' Health Study II (PHS II) is a follow up to the earlier clinical trial by the same name. The study is investigating the effects of vitamin E, C, and multivitamins on prostate cancer and total cancer incidence. The PHS II is expected to conclude in August 2007.

Will NCI continue to investigate the effect of beta-carotene on cancer?

Given the unexpected results of ATBC and CARET, and the finding of no effect of beta-carotene in the PHS and WHS, NCI will follow the people who participated in these studies and will examine the long-term health effects of beta-carotene supplements. Post-trial follow-up has already been funded by NCI for CARET, ATBC, the Chinese Cancer Prevention Study, and the two smaller trials of skin cancer and colon polyps. Post-trial follow-up results have been published for ATBC, and as of July 2004 are in press for CARET and are in progress for the Chinese Cancer Prevention Study.

How might antioxidants prevent cancer?

Antioxidants neutralize free radicals as the natural by-product of normal cell processes. Free radicals are molecules with incomplete electron shells which make them more chemically reactive than those with complete electron shells. Exposure to various environmental factors, including tobacco smoke and radiation, can also lead to free radical formation. In humans, the most common form of free radicals is oxygen. When an oxygen molecule (O2) becomes electrically charged or "radicalized" it tries to steal electrons from other molecules, causing damage to the DNA and other molecules. Over time, such damage may become irreversible and lead to disease including cancer. Antioxidants are often described as "mopping up" free radicals, meaning they neutralize the electrical charge and prevent the free radical from taking electrons from other molecules.