Sense of Smell Wins Nobel Prize (cont.)

Each olfactory receptor cell possesses only one type of odorant receptor, and each receptor can detect a limited number of odorant substances. Our olfactory receptor cells are therefore highly specialized for a few odors.

Smell Cells

The olfactory receptor cells send thin nerve processes directly to distinct microdomains, called glomeruli, in the olfactory bulb. The olfactory bulb is the primary area of the brain for olfaction. Receptor cells carrying the same type of receptor send their nerve processes to the same glomerulus.

From these microdomains in the olfactory bulb, the information is relayed further to other parts of the brain, where the information from several olfactory receptors is combined, forming a pattern.

Lilacs and Strawberries

Thanks to this olfactory system, we can consciously experience the smell of a lilac flower in the spring and recall this olfactory memory at other times, noted the Nobel Assembly.

When something tastes really good it is primarily activation of the olfactory system which helps us detect the qualities we regard as positive. A good wine or a sunripe wild strawberry activates a whole array of odorant receptors, helping us to perceive the different odorant molecules.

Loss of Sense of Smell

A unique odor can trigger distinct memories from our childhood or from emotional moments later in life. A single clam that is not fresh and makes us sick can leave a memory that stays with us for years, and prevents us from ingesting any dish, however delicious, with clams in it.

To lose the sense of smell is a serious handicap -- we no longer perceive the different qualities of food and we cannot detect warning signals, for example smoke from a fire.

The following sections provide more information about the science of our system of smell and are based upon the press release today from the Nobel Assembly.

Deciphering a Sensory System

The olfactory system is the first of our sensory systems that has been deciphered primarily using molecular techniques. Axel and Buck showed that 3% of our genes are used to code for the different odorant receptors on the membrane of the olfactory receptor cells. When an odorant receptor is activated by an odorous substance, an electric signal is triggered in the olfactory receptor cell and sent to the brain via nerve processes.

Each odorant receptor first activates a G protein, to which it is coupled. The G protein in turn stimulates the formation of cAMP (cyclic AMP). This messenger molecule activates ion channels, which are opened and the cell is activated. Axel and Buck showed that the large family of odorant receptors belongs to the G protein-coupled receptors (GPCR).

Health Solutions From Our Sponsors