Flu (Influenza)

  • Medical Author:
    Charles Patrick Davis, MD, PhD

    Dr. Charles "Pat" Davis, MD, PhD, is a board certified Emergency Medicine doctor who currently practices as a consultant and staff member for hospitals. He has a PhD in Microbiology (UT at Austin), and the MD (Univ. Texas Medical Branch, Galveston). He is a Clinical Professor (retired) in the Division of Emergency Medicine, UT Health Science Center at San Antonio, and has been the Chief of Emergency Medicine at UT Medical Branch and at UTHSCSA with over 250 publications.

  • Medical Editor: Melissa Conrad Stöppler, MD
    Melissa Conrad Stöppler, MD

    Melissa Conrad Stöppler, MD

    Melissa Conrad Stöppler, MD, is a U.S. board-certified Anatomic Pathologist with subspecialty training in the fields of Experimental and Molecular Pathology. Dr. Stöppler's educational background includes a BA with Highest Distinction from the University of Virginia and an MD from the University of North Carolina. She completed residency training in Anatomic Pathology at Georgetown University followed by subspecialty fellowship training in molecular diagnostics and experimental pathology.

Flu Slideshow: 10 Foods to Eat When You Have the Flu

Quick Guide10 Foods to Eat When You Have the Flu

10 Foods to Eat When You Have the Flu

What are the causes of the flu (influenza)?

The flu (influenza) viruses

Influenza viruses cause the flu and are divided into three types, designated A, B, and C. Influenza types A and B are responsible for epidemics of respiratory illness that occur almost every winter and are often associated with increased rates of hospitalization and death. Influenza type C differs from types A and B in some important ways. Type C infection usually causes either a very mild respiratory illness or no symptoms at all; it does not cause epidemics and does not have the severe public-health impact of influenza types A and B. Efforts to control the impact of influenza are aimed at types A and B, and the remainder of this discussion will be devoted only to these two types.

Influenza viruses continually change over time, usually by mutation (change in the viral RNA). This constant changing often enables the virus to evade the immune system of the host (humans, birds, and other animals) so that the host is susceptible to changing influenza virus infections throughout life. This process works as follows: A host infected with influenza virus develops antibodies against that virus; as the virus changes, the "first" antibody no longer recognizes the "newer" virus and infection can occur because the host does not recognize the new flu virus as a problem until the infection is well under way. The first antibody developed may, in some instances, provide partial protection against infection with a new influenza virus. In 2009, almost all individuals had no antibodies that could recognize the novel H1N1 virus immediately.

Type A viruses are divided into subtypes or strains based on differences in two viral surface proteins called the hemagglutinin (H) and the neuraminidase (N). There are at least 16 known H subtypes and nine known N subtypes. These surface proteins can occur in many combinations. When spread by droplets or direct contact, the virus, if not killed by the host's immune system, replicates in the respiratory tract and damages host cells. In people who are immune compromised (for example, pregnant women, infants, cancer patients, asthma patients, people with pulmonary disease, and many others), the virus can cause viral pneumonia or stress the individual's system to make them more susceptible to bacterial infections, especially bacterial pneumonia. Both pneumonia types, viral and bacterial, can cause severe disease and sometimes death.

Antigenic shift and drift

Influenza type A viruses undergo two kinds of changes. One is a series of mutations that occurs over time and causes a gradual evolution of the virus. This is called antigenic "drift." The other kind of change is an abrupt change in the hemagglutinin and/or the neuraminidase proteins. This is called antigenic "shift." In this case, a new subtype of the virus suddenly emerges. Type A viruses undergo both kinds of changes; influenza type B viruses change only by the more gradual process of antigenic drift and therefore do not cause pandemics.

The 2009 pandemic-causing H1N1 virus was a classic example of antigenic shift. Research showed that novel H1N1 swine flu has an RNA genome that contains five RNA strands derived from various swine flu strains, two RNA strands from bird flu (also termed avian flu) strains, and only one RNA strand from human flu strains. According to the CDC, mainly antigenic shifts over about 20 years led to the development of novel H1N1 flu virus. A diagram that illustrates both antigenic shift and drift can be found below (see Figure 2) and features influenza A types H1N1 and bird flu (H5N1), but almost every influenza A viral strain can go through these processes that changes the viral RNA. A recent flu epidemic in India was partially blamed on antigenic drift/shift.

Picture of influenza antigenic shift and drift
Figure 2. An example of influenza antigenic shift and drift
Medically Reviewed by a Doctor on 4/28/2016

Subscribe to MedicineNet's Newsletters

Get the latest health and medical information delivered direct to your inbox!

By clicking Submit, I agree to the MedicineNet's Terms & Conditions & Privacy Policy and understand that I may opt out of MedicineNet's subscriptions at any time.

VIEW PATIENT COMMENTS
  • Flu (Influenza) - Symptoms

    Please describe your flu symptoms.

    Post View 55 Comments
  • Flu (Influenza) - Side Effects

    Did you experience any side effects with the flu vaccine?

    Post View 31 Comments
  • Flu (Influenza) - Home Remedies

    What home remedies and/or over-the-counter treatments have helped your flu symptoms?

    Post

Health Solutions From Our Sponsors