Gastroparesis

  • Medical Author:
    Jay W. Marks, MD

    Jay W. Marks, MD, is a board-certified internist and gastroenterologist. He graduated from Yale University School of Medicine and trained in internal medicine and gastroenterology at UCLA/Cedars-Sinai Medical Center in Los Angeles.

  • Medical Editor: Bhupinder Anand, MD
woman with abdominal pain

Gastroparesis facts

  • Gastroparesis is a disease of the muscles of the stomach or the nerves controlling the muscles that causes the muscles to stop working.
  • Gastroparesis results in inadequate grinding of food by the stomach, and poor emptying of food from the stomach into the intestine.
  • The primary symptoms of gastroparesis are nausea, vomiting, and abdominal pain.
  • Gastroparesis is best diagnosed by a test called agastric emptying study.
  • Gastroparesis usually is treated with nutritional support, drugs for treating nausea and vomiting, drugs that stimulate the muscle to contract, and, less often, electrical pacing, and surgery.

What is gastroparesis?

Gastroparesis means weakness of the muscles of the stomach. Gastroparesis results in poor grinding of food in the stomach into small particles and slow emptying of food from the stomach into the small intestine.

The stomach is a hollow organ composed primarily of muscle. Solid food that has been swallowed is stored in the stomach while it is ground into tiny pieces by the constant churning generated by rhythmic contractions of the stomach's muscles. Smaller particles are digested better in the small intestine than larger particles, and only food that has been ground into small particles is emptied from the stomach and well digested. Liquid food does not require grinding.

The ground solid and liquid food is emptied from the stomach into the small intestine slowly in a metered fashion. The metering process allows the emptied food to be well-mixed with the digestive juices of the small intestine, pancreas, and liver (bile) and to be absorbed well from the intestine. The metering process by which solid and liquid foods are emptied from the stomach is a result of a combination of relaxation of the muscle in parts of the stomach designed to accommodate (store) food, and the pressure generated by the muscle in other parts of the stomach that pushes the food into the small intestine. (Thus, the stomach can store and empty food at the same time.) The metering also is controlled by the opening and closing of the pylorus, the muscular opening of the stomach into the small intestine.

When the contractions of the stomach's muscles are weakened, food is not thoroughly ground and does not empty into the intestine normally. Since the muscular actions whereby solid food and liquid food are emptied from the stomach are slightly different, the emptying of solids and liquids follows different time courses, and there may be slow emptying of solid food (most common), solid and liquid food (less common), or liquid food alone (least common).

Quick GuideDigestive Disorders: Common Misconceptions

Digestive Disorders: Common Misconceptions

What causes gastroparesis?

Gastroparesis can be caused either by diseases of the stomach's muscles or the nerves that control the muscles, though often no specific cause is identified. The most common disease causing gastroparesis is diabetes mellitus, which damages the nerves controlling the stomach muscles.

Gastroparesis also can result from damage to the vagus nerve, the nerve that controls the stomach's muscles, that occurs during surgery on the esophagus and stomach. Scleroderma is an example of a disease in which gastroparesis is due to damage to the stomach's muscles. Occasionally, gastroparesis is caused by reflexes within the nervous system, for example, when the pancreas is inflamed (pancreatitis). In such cases, neither the nerves nor the muscles of the stomach are diseased, but messages are sent through nerves from the pancreas to the stomach which prevents the muscles from working normally.

Other causes of gastroparesis include imbalances of minerals in the blood such as potassium, calcium or magnesium, medications (such as narcotic pain-relievers), and thyroid disease. For a substantial number of patients no cause can be found for the gastroparesis, a condition termed idiopathic gastroparesis. Indeed, idiopathic gastroparesis is the second most frequent cause of gastroparesis after diabetes.

Gastroparesis can occur as an isolated problem or it can be associated with weakness of the muscles of other parts of the intestine, including the small intestine, colon and esophagus.

What are gastroparesis symptoms and signs?

The primary symptoms of gastroparesis are nausea and vomiting. Other symptoms of gastroparesis include bloating with or without abdominal distension, early satiety (feeling full quickly when eating), and in severe cases, weight loss due to a reduced intake of food because of the symptoms. Abdominal pain also is present frequently though the cause of the pain is unclear. Reduced intake of food and restriction of the types of food that are eaten can lead to nutritional deficiencies.

The vomiting of gastroparesis usually occurs after meals; however, with severe gastroparesis, vomiting may occur without eating due simply to the accumulation of secretions in the stomach. The characteristic vomiting happens several hours after a meal when the stomach is maximally distended by the presence of food and secretions stimulated by the meal. Since the grinding action of the stomach is absent, the vomited food often contains larger pieces of recognizable food. (This can be contrasted with the more common type of vomiting in which the food appears as small, uniform, unidentifiable particles.)

Other, less frequent effects of gastroparesis are the promotion of gastroesophageal reflux disease (GERD) and malnutrition.

How is gastroparesis diagnosed?

The most common method for diagnosing gastroparesis is a nuclear medicine test called a gastric emptying study, which measures the emptying of food from the stomach. For this study, a patient eats a meal in which the solid food, liquid food, or both contain a small amount of radioactive material. A scanner (acting like a Geiger counter) is placed over the stomach for several hours to monitor the amount of radioactivity in the stomach. In patients with gastroparesis, the food takes longer than normal (usually more than several hours) to empty into the intestine.

The antro-duodenal motility study is a study that can be considered experimental and is reserved for selected patients. An antro-duodenal motility study measures the pressure that is generated by the contractions of the muscles of the stomach and intestine. This study is conducted by passing a thin tube through the nose, down the esophagus, through the stomach and into the small intestine. With this tube, the strength of the contractions of the muscles of the stomach and small intestine can be measured at rest and following a meal. In most patients with gastroparesis, food (which normally causes the stomach to contract vigorously) causes either infrequent contractions (if the nerves are diseased) or only very weak contractions (if the muscle is diseased).

An electrogastrogram, another experimental study that sometimes is done in patients with suspected gastroparesis, is similar to an electrocardiogram (EKG) of the heart. The electrogastrogram is a recording of the electrical signals that travel through the stomach muscles and control the muscles' contractions. An electrogastrogram is performed by taping several electrodes onto a patient's abdomen over the stomach area in the same manner as electrodes are placed on the chest for an EKG. The electrical signals coming from the stomach that reach the electrodes on the abdomen are recorded at rest and after a meal. In normal individuals, there is a regular electrical rhythm just as in the heart, and the power (voltage) of the electrical current increases after the meal. In most patients with gastroparesis, the rhythm is not normal or there is no increase in electrical power after the meal. Although the gastric emptying study is the primary test for diagnosing gastroparesis, there are patients with gastroparesis who have a normal gastric emptying study but an abnormal electrogastrogram. Therefore, the electrogastrogram is useful primarily when the suspicion for gastroparesis is high but the gastric emptying study is normal or borderline abnormal.

A physical obstruction to the emptying of the stomach, for example, a tumor that compresses the outlet from the stomach or scarring from an ulcer, may cause symptoms that are similar to gastroparesis. Therefore, an upper gastrointestinal (GI) endoscopy test usually is performed to exclude the possibility of an obstruction as the cause of a patient's symptoms. (Upper GI endoscopy involves the swallowing of a tube with a camera on the end and can be used to visually examine the stomach and duodenum and take biopsies.)

Upper GI endoscopy also may be useful for diagnosing one of the complications of gastroparesis, a bezoar (a clump or wad of swallowed food or hair). Because of the poor emptying of the stomach, hard to digest components of the diet, usually from vegetables, are retained and accumulate in the stomach. A ball of undigested, plant-derived material can accumulate in the stomach and give rise to symptoms of fullness or can further obstruct the emptying of food from the stomach. Removing the bezoar may improve symptoms and emptying.

A computerized tomographic (CT) scan of the abdomen and upper gastrointestinal X-ray series also may be necessary to exclude cancer of the pancreas or other conditions that can obstruct the emptying of the stomach.

An alternative method of looking at gastric emptying is a large capsule (SmartPill) that is swallowed. The capsule measures pressure and temperature, and then transmits the measurements wirelessly to a recorder. By analyzing the measurements it can be determined how long it takes the capsule to empty from the stomach, and the amount of time necessary for emptying correlates well with other measures of gastric emptying.

Quick GuideDigestive Disorders: Common Misconceptions

Digestive Disorders: Common Misconceptions

How is gastroparesis treated?

Treatment of gastroparesis includes diet, medication, and devices or procedures that facilitate emptying of the stomach. The goals of treatment include:

  1. To provide a diet containing foods that are more easily emptied from the stomach.
  2. Controlling underlying conditions that may be aggravating gastroparesis.
  3. Relieve symptoms of nausea, vomiting, and abdominal pain.
  4. Stimulate muscle activity in the stomach so that food is properly ground and emptied from the stomach
  5. Maintaining adequate nutrition.

Diet

Emptying from the stomach is faster when there is less food to empty, so smaller, more frequent portions of food are recommended. Soft foods (or preferably liquid) that do not require grinding also are emptied more easily. Moreover, in gastroparesis, the emptying of liquids often is less severely affected than the emptying of solids. Fat causes the release of hormones that slow down the emptying of the stomach. Therefore, foods low in fat empty faster from the stomach. In patients with severe gastroparesis, sometimes only liquid meals are tolerated. It also is recommended that the diet be low in fiber (for example, vegetables) due to the concern about the formation of bezoars, and the fact that fiber slows gastric emptying - at least in normal individuals.

Food should be chewed well since the grinding action of the stomach is reduced. Meals should be taken with enough liquids to ensure maximal liquidity of contents in the stomach since liquids usually empty better than solid food; however, if liquid emptying also is slow, too much liquid might create problems. (Only trial and error will determine the effects of increased liquids.) Patients with gastroparesis should have most food early in the day, especially the solid food; they should not lie down for 4-5 hours after their last meal, since when lying, the assistance of gravity on gastric emptying is lost. Multivitamins should be taken because of the likelihood of malnutrition and vitamin and mineral deficiencies.

Controlling underlying conditions

High levels of glucose (sugar) in blood tends to slow gastric emptying. Therefore it is important to lower blood glucose levels in patients with diabetes to near normal levels with diets and medications. Individuals with a deficiency of thyroid hormone (hypothyroidism) should be treated with thyroid hormone. If bezoars are present, they should be removed (usually endoscopically).

Relieving nausea, vomiting, and abdominal pain

Drugs used to relieve nausea and vomiting in gastroparesis include promotility drugs (see discussion that follows) such as metoclopramide (Reglan) and domperidone, anti-nausea medications such as prochlorperazine (Compazine) and promethazine (Phenergan), serotonin antagonists such as ondansetron (Zofran), anticholinergic drugs such as a scopolamine patch (commonly used for treating motion sickness), drugs used for treating nausea in cancer chemotherapy patients such as aprepitant (Emend), and medical marijuana (Marinol).

Drugs used to relieve abdominal pain in gastroparesis include nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen (Motrin) and naproxen (Aleve), low dose tricyclic antidepressants such as amitriptyline (Elavil, Endep), drugs that block nerves that sense pain such as gabapentin (Neurontin), and narcotics such as tramadol (Ultram) and fentanyl (Duragesic). (Nevertheless, narcotics as a group tend to cause constipation and slow emptying of the stomach, and, therefore, should be avoided or used with caution in patients with gastroparesis.

Stimulating muscle activity

Oral Drugs: There are four oral drugs that are used to stimulate contractions of the stomach's muscles, referred to as pro-motility drugs. These drugs are 1) cisapride (Propulsid), 2) domperidone, 3) metoclopramide (Reglan), and 4) erythromycin.

1. Cisapride (Propulsid) is an effective drug for treating gastroparesis; however, it was removed from the market because it can cause serious and life-threatening irregular heart rhythms. Despite this fact, it can be obtained for use through the pharmaceutical company that manufactures it (Janssen Pharmaceuticals) under a strictly monitored protocol but only for patients with severe gastroparesis unresponsive to all other measures.

2. Domperidone has not been released for use in the US; however, it too can be obtained if approval is obtained for its use from the US Food and Drug Administration.

3. Metoclopramide (Reglan) is available without restriction and is effective at promoting muscular activity in the stomach; however, there are side effects of metoclopramide that can limit its use.

4. Erythromycin (E-Mycin, Ilosone, etc.), is a commonly-used antibiotic. At doses lower than those used to treat infections, erythromycin stimulates contractions of the muscles of the stomach and small intestine and is useful for treating gastroparesis.

It has been demonstrated that tegaserod (Zelnorm), an oral drug used for treating constipation in irritable bowel syndrome (IBS), increases emptying from the stomach just as it does from the colon. However, in March of 2007, the FDA asked Novartis to suspend sales of tegaserod (Zelnorm) in the United States because a retrospective analysis of data by Novartis from more than 18,000 patients showed a slight difference in the incidence of cardiovascular events (heart attacks, strokes, and angina) among patients on Zelnorm compared to placebo. The data showed that cardiovascular events occurred in 13 out of 11,614 patients treated with Zelnorm (0.1%), compared to one cardiovascular event in 7,031 (0.01%) placebo-treated patients. However, it is unclear whether Zelnorm actually causes heart attacks and strokes. Doctors and scientists will be scrutinizing the data to determine the long term safety of Zelnorm.

Further studies will be necessary to determine just how effective tegaserod is and how it compares to the other medications that are available for treating gastroparesis before its use can be recommended.

There are two important guidelines in prescribing oral drugs for gastroparesis. First, the drugs must be given at the right times, and second, the drugs must reach the small intestine so that they can be absorbed into the body. Since the goal of treatment is to stimulate muscular contractions during and immediately after a meal, drugs that stimulate contractions should be given before meals.

Most drugs must be emptied from the stomach so that they can be absorbed in the small intestine. The majority of patients with gastroparesis have delayed emptying of solid food as well as pills and capsules. As mentioned previously, many patients with gastroparesis have less of a problem emptying liquids as compared with solid food. Therefore, liquid medications usually are more effective than pills or capsules.

Intravenous drugs: Occasionally, patients have such poor emptying of both liquid and solid food from the stomach that only drugs given intravenously are effective. In such patients, intravenous metoclopramide or erythromycin can be used. A third option is octreotide (Sandostatin), a hormone-like drug that can be injected beneath the skin. Like erythromycin, octreotide stimulates short bursts of strong contractions of the muscles in the stomach and small intestine. Due to its greater expense and the need for injection, octreotide is used only when other medications fail.

Electrical pacing: Electrical pacing of the stomach is a newer method for treating severe gastroparesis. Electrical pacing of the stomach is analogous to cardiac pacing for the treatment of an abnormally slow heartbeat and involves the placement of a pacemaker. The pacemaker usually is placed laparoscopically and does not require a large abdominal incision for entering the abdomen. During placement, wire electrodes are attached to the muscle of the stomach. The wires are brought out through the abdominal wall just beneath the skin. The wires are attached to a small, battery-operated pacemaker that is buried in a surgically-created pouch just under the skin. The skin is then sutured so that the pacemaker and wires are beneath the skin. The pacemaker generates electrical impulses that are transmitted by the wires to the muscles of the stomach, and the muscles contract in response to the impulses. Electrical pacing is effective in many patients with severe gastroparesis, but the numbers of patients who have been treated is small.

Surgery: Surgery occasionally is used to treat gastroparesis. The goal of surgery is to create a larger opening between the stomach and the intestine in order to aid the process of emptying the stomach's contents. Alternatively, the entire stomach may be removed. These procedures should be considered only when all other measures have failed because of the potential complications from the surgery. Surgery should be done only by surgeons in consultation with gastroenterologists who are knowledgeable and experienced in caring for patients with gastrointestinal motility disorders (disorders of the nerves or muscles of the gastrointestinal tract that affect digestion and transport of food).

Maintaining nutrition

Patients with mild gastroparesis usually can be successfully managed with pain relievers and pro-motility medications, but patients with severe gastroparesis often require repeated hospitalizations to correct dehydration, malnutrition and to control symptoms.

Treatment options for dehydration and malnutrition include:

  1. Intravenous fluids to correct dehydration and replenish electrolytes if nutrition is adequate but symptoms occasionally interrupt the intake of even liquid food.
  2. Enteral nutrition which provides liquid food directly into the small intestine, bypassing the paralyzed stomach.
  3. Intravenous total parenteral nutrition (TPN) to provide calories and nutrients (TPN is a fluid containing glucose, amino acids, lipids, minerals, and vitamins-everything that is needed for adequate nutrition-intravenously. The fluid usually is delivered into a large vein via a catheter in the arm or upper chest.)

Doctors generally prefer enteral nutrition over TPN because long-term use of TPN is associated with infections of the catheter and liver damage. Infection can spread through the blood to the rest of the body, a serious condition called sepsis. Catheter-related sepsis often requires treatment with intravenous antibiotics and removal of the infected catheter or replacement with a new catheter. TPN also can damage the liver, most commonly causing abnormal liver tests in the blood. TPN-induced liver damage usually is mild and reversible (the liver test abnormalities return to normal after cessation of TPN), but, rarely, irreversible liver failure can occur. Such liver failure may require liver transplantation.

Enteral nutrition is safe and effective. The two common means of delivering enteral nutrition are via naso-jejunal tubes or jejunostomy tubes. The jejunum is the part of the small intestine just past the duodenum, the first part of the small intestine just beyond the stomach. Both naso-jejunal tubes and jejunostomy tubes are designed to bypass the stomach and deliver nutrients into the jejunum where they can be absorbed.

A naso-jejunal tube is a long, thin catheter inserted (usually by a radiologist or a gastroenterologist) via the nostril into the stomach. The tip of the naso-jejunal tube is then advanced past the stomach into the small intestine. Often this must be done during upper GI endoscopy. Liquid nutrients then can be delivered via the naso-jejunal tube into the small intestine. Naso-jejunal tubes generally are safe, but there are cosmetic disadvantages and discomfort of having a tube in the nose. The problems that occur with naso-jejunal tubes are primarily accidental or intentional removal by the patient, blockage of the tube by solidified nutritional solutions, and aspiration (backup of stomach contents into the lungs that can lead to pneumonia).

A jejunostomy is a catheter placed directly into the jejunum. It can be done during standard abdominal surgery, using minimally invasive techniques (laparoscopy), or by a specially-trained radiologist. With a jejunostomy, the catheter passes through the skin on the abdominal wall and directly into the jejunum. Before a jejunostomy is placed, a trial of naso-jejunal nutrition often is given to be certain that the small bowel is not involved with the same motility problem as the stomach and that nutritional liquids infused into the small intestine will be tolerated.

What is the prognosis (long-term outcome) for patients with gastroparesis?

If gastroparesis is caused by a reversible problem, for example pancreatitis, the condition will subside when the underlying problem resolves. In some people with diabetes, better control of their blood sugar will improve emptying of the stomach. If there is no reversible cause, gastroparesis rarely resolves. In fact, it may become worse with time. Gastroparesis is particularly difficult to treat when there are accompanying motility disorders of the muscles of the small intestine.

What is new in gastroparesis?

The newest experimental treatment for gastroparesis is injection of botulinum toxin into the pylorus. The pylorus is the narrow channel through which food passes from the stomach to the duodenum. The pylorus, like the stomach, is a muscular organ. The pylorus is closed most of the time due to continuous contraction of the pyloric muscle. Intermittently it opens and allows secretions from the stomach to enter the small intestine. After meals, the pylorus is very important for metering the emptying of the stomach. In gastroparesis, although the muscles of the stomach are weak all of the time, the muscle of the pylorus remains strong and contracted and the pylorus relatively closed. It was hypothesized that if the strength of the pyloric muscle was reduced, food might empty from the stomach more readily. Although the initial results were good, subsequent studies have not confirmed the benefit of botulinum toxin. Although the initial results with botulinium toxin were good, subsequent studies have not confirmed the benefit. Its use should be considered experimental.

Although a surgical procedure, termed pyloroplasty, to enlarge the pylorus has been used in the past to treat problems with emptying of the stomach, it is major surgery and has had mixed results with respect to its efficacy.

Medically reviewed by Avrom Simon, MD; Board Certified Preventative Medicine with Subspecialty in Occupational Medicine

REFERENCE: Bortolotti, M. Gastric electrical stimulation for gastroparesis: A goal greatly pursued, but not yet attained. World J Gastroenterol. 2011 January 21; 17(3): 273–282.

Quick GuideDigestive Disorders: Common Misconceptions

Digestive Disorders: Common Misconceptions

Subscribe to MedicineNet's General Health Newsletter

By clicking Submit, I agree to the MedicineNet's Terms & Conditions & Privacy Policy and understand that I may opt out of MedicineNet's subscriptions at any time.

Reviewed on 2/23/2016
References
Medically reviewed by Avrom Simon, MD; Board Certified Preventative Medicine with Subspecialty in Occupational Medicine

REFERENCE: Bortolotti, M. Gastric electrical stimulation for gastroparesis: A goal greatly pursued, but not yet attained. World J Gastroenterol. 2011 January 21; 17(3): 273–282.

Health Solutions From Our Sponsors