Cholera

  • Medical Author:
    Charles Patrick Davis, MD, PhD

    Dr. Charles "Pat" Davis, MD, PhD, is a board certified Emergency Medicine doctor who currently practices as a consultant and staff member for hospitals. He has a PhD in Microbiology (UT at Austin), and the MD (Univ. Texas Medical Branch, Galveston). He is a Clinical Professor (retired) in the Division of Emergency Medicine, UT Health Science Center at San Antonio, and has been the Chief of Emergency Medicine at UT Medical Branch and at UTHSCSA with over 250 publications.

  • Medical Editor: Melissa Conrad Stöppler, MD
    Melissa Conrad Stöppler, MD

    Melissa Conrad Stöppler, MD

    Melissa Conrad Stöppler, MD, is a U.S. board-certified Anatomic Pathologist with subspecialty training in the fields of Experimental and Molecular Pathology. Dr. Stöppler's educational background includes a BA with Highest Distinction from the University of Virginia and an MD from the University of North Carolina. She completed residency training in Anatomic Pathology at Georgetown University followed by subspecialty fellowship training in molecular diagnostics and experimental pathology.

Bacterial Infections 101 Pictures Slideshow

Quick GuideTravel Health Pictures Slideshow: Vaccines & Preventing Diseases Abroad

Travel Health Pictures Slideshow: Vaccines & Preventing Diseases Abroad

What causes cholera, and how is cholera transmitted?

Cholera is caused by the bacterium V. cholerae. This bacterium is Gram stain-negative, comma-shaped, and has a flagellum (a long, tapering, projecting part) for motility and pili (hairlike structures) used to attach to tissue. Although there are many V. cholerae serotypes that can produce cholera symptoms, the O groups O1 and O139, which also produce a toxin, cause the most severe symptoms of cholera. O groups consist of different lipopolysaccharides-protein structures on the surface of bacteria that are distinguished by immunological techniques.

The toxin produced by these V. cholerae serotypes is an enterotoxin composed of two subunits, A and B; the genetic information for the synthesis of these subunits is encoded on plasmids (genetic elements separate from the bacterial chromosome). In addition, another plasmid type encodes for a pilus (a hollow hairlike structure that supports bacterial attachment to human cells and facilitate the movement of toxin from V. cholerae into human cells). The enterotoxin causes human cells to extract water and electrolytes from the body (mainly the upper gastrointestinal tract) and pump it into the intestinal lumen where the fluid and electrolytes are excreted as diarrheal fluid. The enterotoxin is similar to toxin formed by bacteria that cause diphtheria in that both bacterial types secret the toxins into their surrounding environment where the toxin then enters the human cells. The bacteria are usually transmitted by drinking contaminated water, but the bacteria can also be ingested in contaminated food, especially seafood such as raw oysters.

Medically Reviewed by a Doctor on 11/18/2015

Subscribe to MedicineNet's Newsletters

Get the latest health and medical information delivered direct to your inbox!

By clicking Submit, I agree to the MedicineNet's Terms & Conditions & Privacy Policy and understand that I may opt out of MedicineNet's subscriptions at any time.

VIEW PATIENT COMMENTS
  • Cholera - Symptoms

    What were the symptoms experienced with cholera in you or someone you know?

    Post View 1 Comment
  • Cholera - Treatments

    What treatment has been effective for your cholera?

    Post View 1 Comment
  • Cholera - Diagnosis

    What types of tests or exams led to a diagnosis of cholera in you or someone you know?

    Post
  • Cholera - Prevention in Community

    If you live in a community that experiences cholera outbreaks, how do you prevent an infection?

    Post

Health Solutions From Our Sponsors